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1 Abstract

A technique is presented for triangulation of NURBS surfaces. This technique is built

upon an advancing front technique combined with grid point projection. This combined

approach has been successfully implemented for structured and unstructured grids.

2 Introduction

Computer Aided Design (CAD) systems typically represent the surfaces of aerody-

namic vehicles with a set of parametric surfaces such as NonUniform Rational B-Splines

(NURBS). Then, CFD surface grids are generated on these NURBS surfaces. A surface

grid can be generated either in a parameter space or on an approximated/simpli�ed

NURBS surface. Generating surface grid in a parameter space is very common in struc-

tured grid generation. This approach has two serious restrictions. The �rst restriction

is that the choice of surface parameterization a�ects the CFD surface grid. As shown

in [1], a poor parameterization may cause the CFD surface grid to be highly skewed.

There are several ways to alleviate this problem which have been discussed in great

detail in [1]. The second limitation is that a CFD surface grid can not be generated

over several overlapping NURBS surfaces. This is the most serious restriction.

In the second method , the NURBS surfaces are approximated by a few smaller

bi-linear patches. Then, the surface grid is generated on these bi-linear patches. This

method is quite easy to implement, and it avoids the problems associated with surface

parameterization. However, the resulting surface grid is close but not on the original

NURBS surfaces. This problem can be alleviated by projecting the resulting surface
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grid onto the original NURBS surfaces. After the �rst projection, the projected grids

may need to be smoothed and projected again. The projection techniques described

here can be used for structured grid generation as well.

In this study, the NURBS surfaces are �rst approximated by a set of smaller bilinear

patches. Then, an advancing front technique [2] is used to generate surface grid on these

patches. And, �nally this surface grid is projected back onto the NURBS surfaces. In the

following sections, the results of surface triangulation in a parameter space is presented,

the techniques for projecting a point on a surface is described, and �nally results are

summarized.

3 Triangulation in a Parameter Space

Surface triangulation in a parameter space is similar to structured-surface grid genera-

tion. There are four steps in generating a surface-grid in a parameter space. In the �rst

step, the surface is mapped to a parameter space using one of the techniques described

in [1]. The second step is to construct edges of the surface grid in the physical space

and map them to the parameter space. In the third step, the interior grid is generated

using the advancing front technique as described in [3]. Finally, the grid is transformed

from the parameter space to the physical space.

Surfaces generated by a CAD program may have a very poor parameterization.

This could be due to the required CAD operations such surface concatenation, trim-

ming, splitting, conversion, . . . etc. Surface properties such as curvature, nonuniform

spacing (parametrization), aspect ratio and grid orthogonality have in
uence on the

quality of surface grid generated in a parameter space as demonstrated in [1]. Results

from structured grid generation can be extended to unstructured grid generation in re-

gard to e�ect of parameterization. For smooth surfaces, the surface triangulation may

be generated in any of the parameter spaces as discussed in [1]. However, if the surface

is not smooth or it is skewed, then the surface triangulation should be generated in an

arclength parameter space. The FELISA code [3] is used to test the surface triangu-

lation in a uniform parameter space. The code is very easy to use and it generates a

very good surface triangulation provided that the surface has a good parameterization.

Three test cases are presented here, and in all three cases a uniform spacing is speci-
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Figure 1: Triangulation of a Wing Section With Smooth Parameterization.

�ed for the entire domain. Figures 1-2 show two di�erent surface triangulations for a

wing section in a uniform parameter space. Figure 1 shows surface triangulation for

a surface with "good parameterization". This surface grid is very smooth. Figure 2

shows surface triangulation for a surface with "poor parameterization". This surface

triangulation is very smooth except where the surface parameterization is not continu-

ous. These two examples are for a nonplanar surface. In order to separate the e�ect of

curvature, a planar surface is selected for the next example. Figure 3 shows the surface

triangulation for a square plane in a uniform parameter space. This surface has a "poor

parameterization". Again, the surface triangulation is very smooth except where the

surface parameterization is not continuous.

4 Projecting a Point onto a Surface

Projecting a point on a curve has been discussed in [4]. In this section, projecting a

point on a surface will be discussed. Surfaces are generally represented by parametric
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Figure 2: Triangulation of a Wing Section With Discontinuous Parameterization.
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Figure 3: Triangulation of a Square Plane With Discontinuous Parameterization.



splines, e.g., NURBS, as,

~R(~u) = fx(~u); y(~u); z(~u)gT ;

~u = fu1; u2g
T ;2 [(a; b); (c; d)];

where ~u are the parameters which have no geometric signi�cance. However, for a con-

stant u2, as u1 increases, the point ~R(~u) always moves from one side of the surface to

the other side. The process of projecting a point, ~r, on a surface, ~R(~u), can be achieved

by �nding ~u such that distance, d, between ~r and ~R(~u) is minimum and ~u is constrained

to be 2 [(a; b); (c; d)]. Distance, d, can be written in terms parameter ~u as,

d2(~u) = f(~u) = j~R(~u)� ~rj2: (1)

In order to �nd the minimum distance, Eq. 1 must be minimized with respect to ~u.

This can be accomplished by setting the gradient of f , rf(~u), equal to zero, as

rf(~u) = Gi(~u) =
@f(~u)

@ui
= 0; (2)

Gi(~u) =
@ ~R(~u)

@ui
� f~R(~u) � ~rg:

The above nonlinear system of equations must be solved for ~u. Three cases are discussed

here: (1) projection on a three-dimensional triangle element, (2) projection on a bilinear

patch, and (3) projection on a NURBS surface. As shown in Fig. 4, a three-dimensional

triangle element can be represented in terms of its parametric coordinates as

~R(~u) = ~R1u1 + ~R2u2 + ~R3u3;

u1 + u2 + u3 = 1;

or

~R(~u) = (~R1 � ~R3)u1 + (~R2 � ~R3)u2 + ~R3: (3)

Combining Eqs. 2-3 results in a set of linear equations which can be rewritten as,
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Figure 4: Parameter for a Triangular Element

(S2 � S2)u1 + (S1 � S2)u2 = (S � S2)

(S2 � S1)u1 + (S1 � S1)u2 = (S � S1)

u1 + u2 + u3 = 0: (4)

For triangular elements, the above equations are solved for ~u (see Fig. 5 for de�nitions

of S1, S2 and S). The projected point is inside the triangle if

0 � ui � 1; and 0 � u1 + u2 + u3 � 1;

otherwise it is outside. If the projected point is outside of the triangular element, the

parameters, ui, must be clipped as

ui = minfui; 1g; ui = maxfui; 0g: (5)

The second case is for projecting a point onto a bilinear surface, where the surface

is approximated by a set of structured points. A bilinear surface can be decomposed

into a set of bilinear patches, and each patch is approximated in terms of its parameters

(see Fig. 6) as

~R(u1; u2) = (1� u1)(1� u2)~Ri;j + (1� u1)u2 ~Ri;j+1+

u1(1� u2)~Ri+1;j + u1u2 ~Ri+1;j+1: (6)
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Figure 5: Projection on a Triangular Element
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Figure 6: Parameter Space for a Bi-Linear Patch

Combining Eqs. 2 and 6 yields the following system of nonlinear equations,

@ ~R

@u1
� f~R(~u)� ~rg = 0;

@ ~R

@u2
� f~R(~u) � ~rg = 0; (7)

where,
@ ~R

@u1
= (1� u2)(~Ri+1;j � ~Ri;j) + u2(~Ri+1;j+1 � ~Ri;j+1);

@ ~R

@u2
= (1� u1)(~Ri;j+1 � ~Ri;j) + u1(~Ri+1;j+1 � ~Ri+1;j):

Equation 7 is solved by the Newton-Raphson method. It takes an average of 5 iterations

to converge. The method requires an initial guess which is found by sampling the surface

at various locations (see Fig. 7).
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Figure 7: Projection Process for a surface

The third case is for projecting a point onto a NURBS surface. A NURBS surface

can be expressed as

~R(~u) =

Pn

i=0

Pm

j=0Ni;p(u1)Nj;q(u2)wi;j
~Pi;jPn

i=0

Pm
j=0Ni;p(u1)Nj;q(u2)wi;j

; (8)

where n + 1 and m + 1 are the number of control points in i and j directions, respec-

tively. The ~Pi;j are control points (forming a control polygon), wi;j are the weights, and

Ni;p(u1) and Nj;q(u2) are the p-th and q-th degree B-spline basis function de�ned on

the non-periodic and nonuniform knot vector [5], respectively. The N`;� is de�ned as

N`;�(u) =
u� u`

u`+� � u`
N`;��1 +

u`+�+1 � u

u`+�+1 � u`+1
N`+1;��1:

N`;0(u) =

�
1 if u` � u < u`+1
0 otherwise

Combining Eqs. 2 and 8 yields a system of nonlinear equations similar to Eq. 7 which

is solved by the Newton-Raphson method. For NURBS surfaces, the Newton-Raphson

method is similar to the variable metric method [6] which is based on a Taylor series

expansion of f about ~w. This method is iterative and at each iteration the solution,



~wn, is replaced with a corrected solution, ~wn+1. The corrected solution is obtained by

a Taylor series expansion about ~wn as

f(~w)n+1 = f(~w)n + Gi(~w)
T�~w +

1

2
�~wT [H]�~w+ � � � (9)

In the optimization terminology, the Gi(~w) is referred to as the search direction (gradient

vector) and the [H]�1 as the step size (Hessian matrix). They are de�ned as

Gi(~w) = rf(~w) =
@f(~w)

@ui
=

@ ~R(~w)

@ui
� f~R(~w)� ~rg; (10)

Hi;j(~w) = r(rf(~w)) =
@2f(~w)

@ui@uj
; 1 � i; j � 2: (11)

In order to minimize f(~w)n, Eq. 9 is di�erentiated with respect to �~w and set equal to

zero as,

[H][�~w] = �[G]; ~wn+1 = ~wn ��~w: (12)

The function f(~w) is minimum when @f(~w)
@ ~w

is zero and the Hi;j(~w) is positive de�nite.

The step-size has to be monitored during convergence. It is possible for this method

to oscillate or even to diverge [7]. This occurs if within two consecutive iterations, the

search directions are orthogonal (at each iteration the direction of search reverses),

rf(~wn+1)Trf(~wn) = 0:

The Newton-Raphson method converges quadratically provided that the matrix H is

not singular and a su�ciently accurate initial guess is known. In order to �nd an

accurate initial guess, the surface is subdivided into a set of bilinear patches. First,

a patch with its center closest to the "projected point" is found. Then, the patch is

subdivided into two triangles. The point is projected to both triangles, and the closet

triangle is found. The parameters of the projected point are found using Eq. 4. These

parametric coordinates may need to be rotated to match the patch coordinates. Then,

the corrected guess is used as an initial guess for the Newton-Raphson method, Eq. 12.

5 Results and Discussions

Two surface triangulations are projected in this study. The �rst surface triangulation is

projected onto a bilinear surface. Figure 8 shows the result of projecting an unstructured



grid on a bilinear surface. Figure. 9 shows the surface contours before (solid-line) and

after (dash-line) projection. Figure 10 shows the projected surface triangulation for an

X-15 con�guration. This grid has been projected onto ten NURBS surfaces. Figure 11

shows the surface contours before (solid-line) and after (dash-line) projection. In both

examples the projected surface grids were not distorted.

By using the projection technique described above, it is possible to project structured

and unstructured grids onto several overlapping CAD surfaces.
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Figure 8: Projection for a Bilinear Surface
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Figure 9: Projection for a Bilinear Patch



Figure 10: Triangulation for an X-15

Figure 11: Surface Contours of an X-15


